首页> 外文OA文献 >Group-wise analysis on myelination profiles of cerebral cortex using the second eigenvector of Laplace-Beltrami operator
【2h】

Group-wise analysis on myelination profiles of cerebral cortex using the second eigenvector of Laplace-Beltrami operator

机译:使用Laplace-Beltrami算子的第二特征向量分组大脑皮层髓鞘形态

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Myeloarchitecture of cerebral cortex has crucial implication on the function of cortical columnar modules. Based on the recent development of high-field magnetic resonance imaging (MRI), it was demonstrated that it is possible to individually reconstruct such intracortical microstructures. However, there is a scarcity of publicly available frameworks to perform group-wise statistical inferences on high resolution data. In this paper, we present a novel framework that parameterizes curved brain structures in order to construct correspondences across subjects without deforming individual geometry. We use the second Laplace-Beltrami eigenfunction to build such a parameterization, which is known to monotonically increase along the longest geodesic distance on an arbitrary manifold. To demonstrate our framework, a study on the lateralization of Heschl’s gyrus is presented with multiple comparison correction.
机译:大脑皮层的髓结构对皮质柱状模块的功能具有至关重要的意义。基于高场磁共振成像(MRI)的最新发展,已证明可以单独重建这种皮质内显微结构。但是,缺乏公开可用的框架来对高分辨率数据执行逐组统计推断。在本文中,我们提出了一个新颖的框架,该框架可对弯曲的大脑结构进行参数化,以便在不变形单个几何体的情况下跨受试者构建对应关系。我们使用第二个Laplace-Beltrami特征函数来构建这样的参数化,已知该参数化会在任意流形上沿最长测地距离单调增加。为了演示我们的框架,我们对Heschl回旋的侧向化进行了研究,并进行了多个比较校正。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号